государственном уровне передовые разработки в отраслях, работающих на переднем крае энергосбережения.

выводы

Вот почему важно в решении проблем инвестиционной привлекательности заинтересовать потенциальных инвесторов вкладывать инвестиции в развитие:

- возобновляемых источников энергии;
- строительства индустриальных промышленных парков;
- морских торговых путей и т.д.

ЛИТЕРАТУРА

- 1. Специализированный журнал для строителей, энергетиков, архитекторов и дизайнеров от 1 февраля 2010г. « Крым Стройиндустрия энергосбережение».
- 2. Специализированный журнал для строителей и энергетиков «Энергосбережение и водоподготовка» от февраля 2010г.
 - 3. Журнал «Эско» . Январь 2010г.
 - 4. Специализированный журнал «Новая энергетика»
 - 5. Сайт консалтинговой компании «РеалЭкспо» www.zagorodna.com

УДК 658.264: 551.582

НОВЫЕ ИНЖЕНЕРНЫЕ РЕШЕНИЯ ПРИ РЕКОНСТРУКЦИИ СУЩЕСТВУЮЩИХ СЕТЕЙ ЛЕЧЕБНО-ОЗДОРОВИТЕЛЬНЫХ УЧРЕЖДЕНИЙ КРЫМА

Муровский С.П., к.т.н., доцент, Лиходовский Д.В. студент гр. НИЭ-501

Национальная академия природоохранного и курортного строительства

В работе показана перспектива внедрения пассивных солнечных систем при реконструкции инженерных сетей лечебно-оздоровительных учреждений Крыма. Рассмотрена перспектива внедрения гелиоустановок в систему горячего водоснабжения объектов. Рассмотрены варианты комбинированных энергосистем с использованием тепловых насосов.

Пассивный солнечный обогрев, плоский коллектор, тепловой насос. ВВЕДЕНИЕ

Среди мировых курортов Крым занимает свое, особое, неповторимое место. Прежде всего, стоит отметить универсальность Крыма. На полуострове имеются самые разнообразные природные лечебно-оздоровительные ресурсы. Главными из них являются мягкий целебный климат и два моря, омывающих Крымское побережье, а также лечебные грязи и рапа - вода соленых озер и лиманов.

На сегодняшний день в Крыму сформировалась довольно четкая инфраструктура курортно-оздоровительных учреждений, позволяющая в полной мере использовать природно-рекреационный потенциал полуострова. Но этот потенциал не бесконечен, и нам необходимо бережно относится ко всем благам, которыми одаривает нас матушка-природа.

Мир движется к исчерпанию доступных невозобновимых природных ресурсов, которые составляют более 90% учтенного на сегодняшний день мирового энергетического баланса. Тенденции свидетельствуют о возрастании роли возобновляемых источников энергии (ВИЭ): через несколько десятков лет их доля в мировом энергетическом балансе должна составить 20-30%. Необходимость замены невозобновляемых источников энергии возобновляемыми связана не только с их исчерпанием в перспективе, но и с опасностью планетарного масштаба, возникающей из-за сжигания угля, нефти, и газа, ведущая к увеличения содержания CO_2 в атмосфере [1].

В связи с эти в последнее время в Крыму реконструируются многие здравницы, строятся новые экологически чистые и по возможности энергонезависимые объекты курортного назначения.

ПОСТАНОВКА ЗАДАЧИ

Мировой опыт использования солнечной энергии сводится к двум основным методам - пассивному и активному.

В пассивных системах поглощение и аккумулирование солнечной энергии осуществляется непосредственно элементами строительных конструкций зданий с использованием дополнительных устройств или без них. Для этого используются как толстые стены, аккумулирующие энергию и ориентацию окон на солнечную сторону, так специальные технологические приемы и системы, в частности, окрашивание стены, обращенной на юг, в черный цвет, остекление поверхности южной стены с пространством, в котором остается воздух для конвективного обмена, создание водяной прослойки, состоящей из наполненных водой резервуаров. В зданиях, построенных с учетом пассивного использования солнечной энергии, вклад солнца в потреблении тепла может составить до 40%. Доля пассивного нагрева обычно не учитывается официальной статистикой, однако в действительности это самый большой источник использования возобновляемой энергии. Примером пассивного солнечного отопления является система Лефевра (рис. 1) [2].

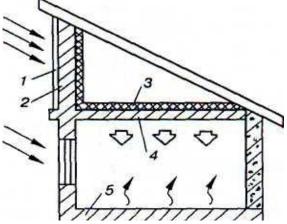


Рис. 1. Система пассивного солнечного отопления Лефевра: 1 — двухслойное светопрозрачное ограждение; 2 - стена-теплоприёмник; 3 — теплоизоляция; 4, 5 - потолок и пол — аккумуляторы теплоты.

На сегодняшний день пассивное отопление широко применяется не только в южных районах. Одним из таких проектов является комбинированное энергоснабжение торгового комплекса «Парус» в г. Владивосток. В архитектуре комплекса использованы традиционные приемы «пассивной» солнечной архитектуры. Так, южный фонарь верхнего света вытянут вдоль меридиана, с востока на запад, что обеспечивает беспрепятственный солнечный прогрев в течение дня. Главная пирамида раскрыта на солнечные стороны горизонта, северная грань по проекту полностью «глухая», отражающая солнечные лучи вниз. Все фонари выполнены по проекту с теплоотражающей пленкой, снижающей на 70% потери тепла лучистой энергии (рис. 2) [3].

Солнечный радиационный режим в Крыму является наиболее благоприятным для практического использования солнечной энергии. Рассмотрим как один из вариантов внедрения пассивного энергоснабжения при реконструкции инженерных сетей лечебно-оздоровительного комплекса «Альбатрос», расположенного на юго-западном побережье Черного моря, в живописнейшем местечке Алькадар на территории бывших охотничьих угодий князя Юсупова в г. Севастополь.

В нашем случае южный фасад здания санатория остеклен и пассивно использует энергию солнца. В качестве активного источника использования солнечной энергии будут использоваться плоские жидкостные солнечные коллектора (СК), которые являются наиболее распространенным и совершенным типом коллекторов в низкотемпературных гелиоустановках. Это обусловлено относительно большой теплоемкостью жидкости при достаточно хорошей ее подвижности. Также к числу принципиальных преимуществ СК по

сравнению с коллекторами других типов относится его способность улавливать как прямую (лучистую), так и рассеянную солнечную энергию и как следствие – возможность стационарной установки без необходимости слежения за Солнцем.

Рис. 2. Схемное решение пассивного энергоснабжения супермаркета «Парус» в г. Владивосток.

Плоский коллектор солнечной энергии работает на принципе тепличного эффекта. Физическая суть этого эффекта заключается в том, что солнечное излучение, падающее на поверхность теплового коллектора, покрытого прозрачным для солнечных лучей материалом, практически без потерь проникает внутрь СК и, попадая на абсорбер, нагревают его, а процесс рассеивания тепловой энергии минимизирован.

Эффективность солнечного коллектора может быть увеличена примерно на 20% при использовании селективно поглощающих покрытий абсорбера, которые обладают свойством хорошо поглощать видимую часть солнечного спектра и практически не излучать в инфракрасной области спектра [1].

Так как лечебно-оздоровительный комплекс, в котором проводится реконструкция инженерных сетей, является учреждением с круглогодичным режимом работы, то в качестве теплоносителя первого контура будем применять незамерзающую жидкость (антифриз), и с помощью теплообменника в накопительном теплоизолированном баке и дополнительного нагревателя (электронагревателя) сможем в течение года экономить до 50-70% электроэнергии. К тому же двойной контур с антифризом позволяет работать системе зимой при температуре воздуха до (-)25°С и отсутствии риска повреждения установки во время заморозков.

В зависимости от ориентации лечебно-оздоровительного учреждения и ожидаемого эффекта в результате реконструкции и внедрении возобновляемых источников энергии, возможно применение различных систем преобразования солнечной энергии, а также их комбинированного использования.

Для коммерческого использования в условиях Крыма пригодны недорогие системы горячего водоснабжения, совмещающие использование СК и баков-аккумуляторов (БА) емкостью 100-200 л для обеспечения потребностей в горячей воде (40-60°С) в летний период. Системы просты в эксплуатации.

В качестве дублирующего источника предусмотрен тепловой насос (ТН). Использование ТН для отопления, охлаждения и горячего водоснабжения представляет собой альтернативу сжиганию органического топлива, центральному водяному отоплению, электрообогреву. Характерная особенность ТН - при подводе к нему 1 кВт электроэнергии, в зависимости от режима работы и условий эксплуатации, возможно получение до 3-4 кВт тепловой энергии. Эффективность теплового насоса характеризует его коэффициент преобразования ε - отношение тепла в кВт, полученного в ТН к затратам мощности на привод компрессора. Этот коэффициент в современных ТН варьируется от 3 до 8 [4].

Важной функцией ТН, определяющей его популярность, является горячее водоснабжение. В большинстве исследований роли ТН в будущем основным считается отопление, но отмечается, что горячее водоснабжение и восстановление тепла становятся все более важными по мере роста строительства и реконструкции малоэнергоемких объектов и "полностью интегрированных систем", основанных на тепловых насосах.

Однако при этом выпадает основная проблема - применение ТН в уже существующих зданиях, проблема замены одной установки, дающей одновременно отопление и горячее водоснабжение (центральной котельной) — ТН, способным одновременно решать обе задачи. Эта проблема связана с экономичностью использования низкотемпературного внешнего теплового источника для получения горячей воды высокой температуры.

Таким образом, повсеместное внедрение тепловых насосов позволит сэкономить значительную часть истощаемых энергоносителей и капиталовложений для их оплаты, обеспечить теплом "проблемные" в этом отношении районы, направить средства на развитие производства или инфраструктуры предприятий. Применение таких энергосистем в отдельных зданиях позволит регулировать тепловой режим в помещениях, делая его наиболее комфортным. Постоянно растущие цены на газ в ближайшем будущем делают тепловые насосы конкурентоспособными по цене на производимую тепловую энергию. Преимущества тепловых насосов перед другими источниками теплоснабжения неоспоримы (табл. 1) [5].

Таблица 1 Сравнения себестоимости получения тепла в зависимости от вида топлива

	Уголь, 1 т	Газ, 1000 м ³	Жидкое топливо, 1 т	Электроотопление, 1 кВт	Отопление ТН, 1 кВт
Стоимость топлива	600 грн	700 грн	3500 грн	0,25 грн	0,25 грн
Теплотворная способность топлива	5180 кВт	8900 кВт	10000 кВт	1 кВт	1 кВт
Среднегодовое КПД оборудования	70%	83%	85%	100%	100%+300%=400
Получаемая теплота	3626 кВт	7387кВт	8500кВт	1кВт	4кВт
Стоимость одного кВт тепла	0,18 грн	0,095 грн	0,41 грн	0,25 грн	0,063 грн

Из табл. 1 видно, что ТН сегодня конкуренцию составляют только энергоустановки на газовом топливе, но в связи с ростом цены на природный газ преимущество ТН становится очевидным. Система с ТН исключительно долговечна, срок эксплуатации грунтового зонда или коллектора может достигать 100 лет. Непосредственно в самой установке единственной движущей частью является компрессор, срок службы которого составляет 15-20 лет, и который можно легко заменить по истечении срока его эксплуатации. Срок окупаемости оборудования не превышает 6-7 отопительных сезонов.

В процессе эксплуатации система не нуждается в специальном обслуживании. В настоящее время ТН являются более экономичными, чем котлы на жидком топливе или электрическое отопление.

В разрабатываемом проекте по реконструкции инженерных сетей лечебно-оздоровительного комплекса будет установлено два ТН. Первый будет использовать в

качестве низкопотенциального источника тепла морскую воду, и работать на отопление в зимний период, а в летний - на подогрев воды в бассейне. Второй будет использовать предварительно нагретую до $20\text{-}25^{\circ}\text{C}$ воду от гелиоколлекторов с последующим доведением температуры до 50°C и подачи в сеть горячего водоснабжения.

Для снижения тепловых потерь здания проведем теплоизоляцию ограждающих конструкций с применением утеплителя из базальтовых плит толщиной 5 см. Важнейшим техническим требованием, предъявляемым к окнам и балконным дверям, устанавливаемым в наружных стенах зданий, является сопротивление теплопередаче. Сопротивление теплопередаче показывает разницу температур снаружи и внутри дома, при которой через 1 м² площади окна проходит 1 Вт тепловой мощности. Чем выше этот показатель, тем лучше окно выполняет функцию энергосбережения. В связи с этим планируется замена старых деревянных оконных блоков с одинарным остеклением на двухкамерные стеклопакеты, состоящие из двух листовых энергосберегающих стекол толщиной 4 мм марки М1, с расстоянием между ними 16 мм, межстекольное пространство заполненные аргоном с коэффициентом теплопередачи λ =0,8 м².°С/Вт.

Предлагаемая реконструкция инженерных сетей позволит уменьшить выбросы углекислого газа в атмосферу на 32 т в год и экономии электроэнергии до 25 тыс. грн ежегодно.

Замена ламп накаливания на компактные люминесцентные приведет к дополнительной экономии денежных средств уже за первый год в размере 3 тыс. грн.

выводы

- 1. Широкое использование солнечной энергии в рекреационной зоне позволило бы сократить количество сжигаемого угля, мазута и природного газа, в результате улучшив экологическую ситуацию в регионе. Являясь потребительским товаром, солнечные системы улучшают условия отдыха и лечения, повышают их комфортность, увеличивают независимость лечебных учреждений от коммунальных служб.
- 2. Внедрение тепловых насосов в систему энергоснабжения различных объектов позволит сэкономить значительную часть истощаемых энергоносителей и капиталовложений для их оплаты, обеспечить теплом "проблемные" в этом отношении здания. Применение энергосистем с ТН в отдельных зданиях позволит регулировать тепловой режим в помещениях, делая его наиболее комфортным.

ЛИТЕРАТУРА

- 1. Муровский С.П. Солнечная энергетика для устойчивого развития Крыма / Н.В. Багров, В.Н. Боков, С.П. Муровский и др.- Симферополь: «Доля».- 2009.- 294 с.
 - 2. Форум электр. информ.- режим доступа: http://www.energy.econews.uz
 - 3. Форум электр. информ.- режим доступа: http://www.energohelp.net
- 4. Муровский С.П. Расчет комбинированной системы горячего водоснабжения гостиничного комплекса на базе СТВК и ТН с грунтовым теплообменнтком: матеріали ІХ міжнародної конференції «Відновлювана енергетика ХХІ століття» (Миколаївка, АР Крим, 15-19 вер. 2008 р.) / С.П. Муровский, А.С. Муровская. НАНУ, КПІ.- Київ, 2008.- С. 77-81.
 - 5. Форум электр. информ.-режим доступа: http://www.altens.com.ua/teplovoy.htm

УДК 628.3

КОНТРОЛЬ УРОВНЯ ЗАПОЛНЕНИЯ РЕЗЕРВУАРА ПРИ АВТОНОМНОЙ СИСТЕМЕ ВОДОСНАБЖЕНИЯ (НА ПРИМЕРЕ ЛАБОРАТОРНОЙ УСТАНОВКИ)

Нагорный Д.Н., студент гр. НИЭ-501, Сокут Л.Д., к.т.н., доцент.

Национальная академия природоохранного и курортного строительства

Приведен краткий обзор датчиков уровня жидких и сыпучих тел, выпускаемых промышленностью Украины, и результаты разработки кондуктометрического датчика