ДЕРЕВЯННЫЕ КЛЕЕНЫЕ КОНСТРУКЦИИ ЗАРУБЕЖНЫХ ПЕШЕХОДНЫХ МОСТОВ

Кириленко В.Ф., к.т.н., доцент, Мотина В.Г., ст. преподаватель Национальная академия природоохранного и курортного строительства

Представлен краткий обзор применения деревянных мостов, а также приведены деревянные конструкции современных пешеходных мостов, построенных в последнее время в странах Западной Европы

Деревянные мосты: краткий обзор

Мосты и сооружения на дорогах относятся к открытым сооружениям, находящимся под влиянием переменного температурно-влажностного режима и воспринимающим подвижную нагрузку. При проектировании таких сооружений особое место занимает вопрос выбора конструкционных материалов, поскольку это определяет как стоимость, так и срок службы.

Сравнение стоимости мостов из стали, железобетона и древесины, проведенные в США, показало, что если стоимость деревянного моста принять за 100%, то стоимость металлического моста равна 150%, а железобетонного – 310%. Согласно тем же исследованиям сроки службы деревянных мостов из клееной древесины составляют в среднем 50 лет, что объясняется хорошей сохранностью антисептированной древесины и отсутствием расслоения клеевых швов. Кроме того, в США полагают, что независимо от применения материала, из которого построен мост, через 50 лет конструкции в силу изменения условий будут требовать модификации. На американском континенте (США и Канада) деревянные мосты стали объектами массового строительства, их количество на автомобильных дорогах составляет сотни тысяч единиц.

В странах Центральной и Северной Европы строительство сооружений из древесины было связано, в основном, с объектами промышленного и гражданского назначения, количество же мостовых сооружений крайне ограничено. принята начале девяностых годов В Финляндии исследовательская программа, направленная на выбор перспективных направлений и потенциальных рынков деревянных мостов как в Финляндии, так и в соседних странах (Швеция, Норвегия).

Занимая первое место в мире по запасам древесины, Украина, Россия и другие страны СНГ в развитии деревянного мостостроения шли несколько другим путём. В период первых пятилеток, второй мировой войны и послевоенные годы древесина эффективно применялась в транспортном строительстве. Начиная с пятидесятых годов однобокая техническая политика в строительстве, ориентированная только на сборный железобетон, привела к ограниченному применению древесины, включая и деревянное мостостроение с применением современных клееных конструкций. Украина, располагающая

одним заводом клееных конструкций (г. Коростышев Житомирской обл.), приобретенным в Германии еще в начале семидесятых годов, перед распадом СССР и особенно в годы независимости практически не выпускает клееные конструкции, поэтому вопрос деревянного мостостроения отпадает сам по себе.

В Российской Федерации, располагающей примерно двумя десятками заводов и цехов клееных конструкций, применение клееной древесины в строительстве увеличивается, однако оно не отвечает современным требованиям. В мостостроение клееные конструкции пришли с большим опозданием и к настоящему времени число автодорожных мостов с их применением не превышает нескольких десятков. Сведений о пешеходных мостах с применением клееной древесины на просторах СНГ практически нет, а единичные примеры зарубежного строительства в учебной литературе [1-4] и периодических изданиях [5, 6] не дают представления о современном уровне.

Деревянные пешеходные мосты в Западной Европе

В европейских странах строительство деревянных пешеходных мостов получило развитие, в основном, в Германии, Швейцарии, Австрии. В этих странах возведены мосты преимущественно балочных систем, мосты с применением сквозных конструкций, а также висячие системы мостов [7]. Здесь отдано предпочтение деревянным клееным конструкциям. Перекрываемые пролеты достигают восьмидесяти метров, а над некоторыми мостами устроены лёгкие крыши. Мосты прекрасно вписываются в ландшафт местности и с эстетической точки зрения являются украшением прилегающих территорий.

Пешеходный мост у озера Аммерзее (Германия)

Мост однопролётный, балочный длиной 21 м и шириной 2 м (рис. 1). Пролётное строение состоит из двух главных дощатоклееных балок сечением 20×115 см. Через 3 м по длине к ним подвешены на болтах диаметром 20 мм поперечные балки сечением 12×21 см с консолями, на свободных концах которых поставлены укосины, упирающиеся верхними концами в верхние части главных балок. В плоскости балок по длине моста поставлены диагональные связи сечением 10×10 см. По поперечным балкам уложены два прогона сечением 8×18 см, сверху которых находится рабочий деревянный настил из толстых досок 18×6 см.

Пешеходный мост через реку Альб (Германия)

Мост балочной конструкции пролётом 18,44 м и шириной 2,18 м (рис. 2). Полная высота конька крыши над опорами 4,17 м, габарит для пешеходов 2,18×2,67 м, высота шатровой части 1,5 м. Пролётное строение состоит из двух главных балок сечением 15×40 мм. Для поддержки несущих конструкций шатрового покрытия вдоль моста принята подкосная система со стойками и подкосами сечением 24×24 см. В поперечном направлении неизменяемость и устойчивость конструкций покрытия обеспечивается установкой четырёх поперечных рам, две из которых — портальные, а стойками двух других

промежуточных рам являются стойки подкосной системы. В уровне верха главных балок выполнена треугольная система связей сечением 7×20 см. Сверху поперёк моста уложен рабочий настил сечением 7×20 см.

Пешеходный мост в г. Стрёбинг (Германия)

Мост балочной системы длиной 21 м с опорами-подкосами для движения на роликовых коньках и скейтбордах (рис. 3). Пролетное строение выполнено из двух главных балок сечением $12\times28 \text{ см}$. Сдвоенные поперечные балки сечением $20\times20 \text{ см}$ поставлены с шагом 3 м. Подкосные опоры выполнены из брусьев сечением $16\times16 \text{ см}$. Проезжая часть выполнена из сталебетонной плиты с арматурой в виде профилированного настила и ездовым полотном из оцинкованной стали толщиной 1 мм.

Пешеходный мост в г. Ердинг (Германия)

Мост балочной конструкции пролётом 39,6 м (рис. 4). Пролетное строение состоит из двух дощатоклееных балок сечением 18×120 см, каждая из которых усилена шпренгельной системой с двумя V-образными подкосами, поставленными в третях пролета. Через 3 м по длине расположены поперечные балки сечением 18×36 см с консольными участками для постановки укосин, верхние концы которых упираются в главные балки. На поперечные балки поставлены три прогона, по которым уложен дощатый настил толщиной 50 мм.

Пешеходный мост в г. Зимме (Швейцария)

Деревянный мост для пешеходов и велосипедного движения общей длиной 108 м и шириной 4,4 м (рис. 5). Мост построен через глубокую впадину реки, которая в средней части мостового перехода судоходна. Мост трёхпролетный (27+54+27 м), крытый. Пролётное строение представляет собой две деревянные клееные фермы параллельными поясами двумя треугольными щпренгельными системами в нижней части ферм для опирания промежуточные опоры. Длина панели ферм составляет 6,75 м. В узлах нижнего поперечные пояса ферм поставлены дощатоклееные балки 16×36,6 см. Проезжая часть представляет собой дощатый укладываемый на шесть прогонов сечением 12×26 см. Пространственная жесткость обеспечивается диагональными связями в плоскости нижнего пояса и вертикальными диагональными связями в шпренгельных системах на Для устройства промежуточных опорах. крыши верхние пояса ферм объединены в рамную систему.

Мост для велосипедного движения в г. Дитфурт (Германия)

Пролетное строение состоит из двух деревянных ферм переменной высоты по длине, опирающихся на две промежуточные опоры (рис. 6). Максимальный пролет в средней части моста составляет 48,3 м, размеры береговых пролетов $2\times6,9$ м. Фермы выполнены с большим строительным подъемом, минимальная высота ферм в середине пролета составляет 4,8 м, что составляет 1/10 величины пролёта. С целью увеличения пространственной жесткости стойки ферм на

промежуточных опорах моста выполнены из стальных двутавров и объединены такими же элементами в верхней и нижней части поперёк моста. Это образует своего рода жёсткие стальные портальные рамы. К нижним узлам ферм с размером панели 3,45 м присоединены поперечные балки. На поперечные балки установлены прогоны, по которым выполнен дощатый настил из древесины лиственницы.

Пешеходный мост в Мюнхене (Германия)

Мост общей длиной 96 м представляет собой пятипролётную систему, три крайних пролёта (10+52+10) перекрыты двумя неразрезными деревянными фермами постоянной высоты (рис. 7). Над этой частью моста устроена крыша, что обеспечивает пролетному строению повышенную долговечность. Пояса, раскосы и стойки ферм выполнены из сдвоенных клееных элементов. Высота ферм 4 м, таким образом, отношение высоты фермы к среднему пролёту составляет 1/13. В узлах нижних поясов ферм крепятся поперечные балки и связи. Пространственная жёсткость кроме диагональных связей по нижнему поясу обеспечивается конструктивными элементами покрытия крыши. На поперечные балки уложены три прогона, по которым укладывается рабочий настил из досок толщиной 50 мм.

Пешеходный мост в г. Мартигну (Швейцария)

Висячий деревянный мост с возможностью велосипедного движения пролётом 28 м (рис. 8). Пролётное строение моста шириной 2,5 м поддерживается двумя парами оттяжек, прикрепленным в третях пролета. Оттяжки крепятся к четырем пилонам, установленным в начале и конце мостового перехода. Пролетное строение состоит из двух главных составных балок из древесины лиственницы с соединениями на болтах. К балкам снизу с малым шагом по длине присоединены поперечные балки, по которым непосредственно уложен дощатый настил из древесины лиственницы толщиной 60 мм.

Пешеходный мост в г. Валлорбе (Швейцария)

Мост выполнен висячим с пролетом 24 м (рис. 9). Деревянное пролетное строение поддерживается пятью парами стальных оттяжек, в верхней части закрепленных к наклонному пилону, стойки которого выполнены из круглых лесоматериалов диаметром 36 см, ригель в верхней части пилона выполнен также из бревна диаметром 30 см. В верхней части пилона стойки, ригель и оттяжки соединены с помощью специального металлического оголовка. Продольные балки выполнены из окантованных бревен 2×24 см. Стальные оттяжки крепятся к поперечным деревянным балкам из окантованных бревен. Деревянный настил выполнен из древесины лиственницы толщиной 60 мм.

Пешеходный мост в г. Исманинг (Германия)

Мост висячей системы с длиной подвешенной части в средней части моста 60 м (рис. 10). Подвеска осуществляется с помощью металлических тросов,

закрепленных на двух А-образных пилонах, установленных в средней части мостового перехода. Пролётное строение состоит из двух дощатоклееных балок сечением 20×123 см. Крепление стальных тросов к пролетному строению выполнено с помощью металлических поперечных элементов с конической формой поверхности на концах. В этих местах в нижней части между балками поставлены стальные диагональные связи. В средней части моста, где тросы проходят ниже уровня проезда, для передачи усилий на главные балки в двух местах снизу поставлены металлические вертикальные поперечные рамы. Проезжая часть выполнена в виде настила толщиной 65 мм, уложенного на три прогона.

выводы

- 1. Технико-экономические показатели современных деревянных мостов, их долговечность, а также малые транспортные расходы на их доставку и возведение, являются несомненными достоинствами по сравнению с мостами из других конструкционных материалов.
- 2. Только расширение производственной базы клееных деревянных конструкций с приобретением заводов и цехов за рубежом позволит в Украине и России ликвидировать перекос в области строительства, включая и деревянное мостостроение, наносящий немалый ущерб нашему хозяйству.
- 3. Являясь курортными и туристическими регионами, Крым и Карпаты, прежде всего, нуждаются не только в современных магистралях, но и в прогулочных, велосипедных, пешеходных дорогах, построенных с учетом ландшафтного проектирования с наличием на них лёгких мостов, украшающих прилегающую территорию.
- 4. Необходимо подготовить современные учебники и учебные пособия по курсу деревянных автодорожных и пешеходных мостов, которые, кроме всего прочего, включали бы и последние достижения в этой области.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гибшман М.Е., Попов В.И. Проектирование транспортных сооружений. М.: Транспорт, 1988. 447 с.
- 2. Стуков В.П. Мосты с балками комбинированного сечения из клееной древесины и железобетона / Арх. Гостехун-т. Архангельск, 1997. 175 с.
- 3. Кулиш В.И. Клееные деревянные мосты с железобетонной плитой. М.: Транспорт, 1979. 160 с.
- 4. Инженерные сооружения в транспортном строительстве:/ Под ред. П.М. Саламахина. Кн. 1. М.: Изд. центр «Академия», 2008. 352 с.
- 5. Дмитриев П.А. Новое в зарубежном строительстве автодорожных и пешеходных мостов // Известия вузов. Стр-во и архитектура. 1997. № 1-2. С. 84-89.
- 6. Костелянц Б.А., Картопольцев В.М. Деревянные мосты на автодорогах России // Известия вузов. Стр-во и архитектура. 1997. № 1-2. С. 89-93.
- 7. Holzbau Atlas / J. Natterer, T. Herzog, R. Schweitzer, M Volz. München, 2003. 376 c.